Transcendence of an algebraic point of the several variable function

Takeshi Kurosawa
Keio University

Duverney and Nishioka [1] gave us strong criterion for transcendence for Mahler type function. If α is an algebraic number, we denote its house by $\overline{|\alpha|}=\max \left\{\left|\alpha^{\sigma}\right| \mid \sigma \in \operatorname{Aut}(\overline{\mathbb{Q}} / \mathbb{Q})\right\}$ and by den (α) the least positive integer such that den $(\alpha) \alpha$ is an algebraic integer, and we set $\|\alpha\|=\max \{\overline{|\alpha|}$, den $(\alpha)\}$. Let \boldsymbol{K} be an algebraic number field and $O_{\boldsymbol{K}}$ the ring of integers in \boldsymbol{K}. They considered the following function

$$
\Phi_{0}(x)=\sum_{k \geq 0} \frac{E_{k}\left(x^{r^{k}}\right)}{F_{k}\left(x^{r^{k}}\right)},
$$

where

$$
\begin{gathered}
E_{k}(x)=a_{k 1} x+a_{k 2} x^{2}+\cdots+a_{k L} x^{L} \in \boldsymbol{K}[x], \\
F_{k}(x)=1+b_{k 1} x+b_{k 2} x^{2}+\cdots+b_{k L} x^{L} \in O_{\boldsymbol{K}}[x], \\
\log \left\|a_{k l}\right\|, \log \left\|b_{k l}\right\|=o\left(r^{k}\right), 1 \leq l \leq L .
\end{gathered}
$$

Then they proved the following:
Transcendence criterion (Duverney and Nishioka [1]). Let α be an algebraic number with $0<|\alpha|<1$ such that $F_{k}\left(\alpha^{r^{k}}\right) \neq 0$ for every $k \geq 0$, then $\Phi_{0}(\alpha)$ is an algebraic number if and only if $\Phi_{0}(x)$ is a rational function.

They showed necessary and sufficient condition of Mahler type function by introducing inductive method. The author [2] showed the transcendence criterion for several variable Mahler type function under some restricted conditions. Tachiya [4] gave transcendence criterion for infinite product case as same as Nishioka and Duverney. Moreover, he also gave transcendence criterion for the infinite product case for several variable function in [3]. The author will give complete generalisation of transcendence criterion of Nishioka and Duverney.

We use usual notations

$$
|\boldsymbol{\lambda}|=\sum_{i=1}^{m} \lambda_{i}, \quad \boldsymbol{\alpha}^{\boldsymbol{\lambda}}=\prod_{i=1}^{m} \alpha_{i}^{\lambda_{i}}, \quad \text { and } \quad\langle\boldsymbol{\lambda}, \boldsymbol{\eta}\rangle=\sum_{i=1}^{m} \lambda_{i} \eta_{i}
$$

for $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{m}\right), \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, and $\boldsymbol{\eta}=\left(\eta_{1}, \ldots, \eta_{m}\right)$. Let $r \geq 2$ be a integer. We define $\Omega_{n} \boldsymbol{z}:=\left(z_{1}{ }^{r^{n}}, \ldots, z_{m}{ }^{r^{n}}\right)$ for $\boldsymbol{z}=\left(z_{1}, \ldots, z_{m}\right)$ and

$$
\begin{equation*}
S:=\Phi_{0}(\boldsymbol{z})=\sum_{k \geq 0} \frac{E_{k}\left(\Omega_{k} \boldsymbol{z}\right)}{F_{k}\left(\Omega_{k} \boldsymbol{z}\right)} \in \boldsymbol{K}[[\boldsymbol{z}]]=\boldsymbol{K}\left[\left[z_{1}, \ldots, z_{m}\right]\right], \tag{1}
\end{equation*}
$$

where

$$
E_{k}(\boldsymbol{z})=\sum_{1 \leq|\lambda| \leq L} a_{k \lambda} z^{\boldsymbol{\lambda}}, \quad F_{k}(\boldsymbol{z})=1+\sum_{1 \leq|\boldsymbol{\lambda}| \leq L} b_{k \lambda} \boldsymbol{z}^{\boldsymbol{\lambda}} \in \boldsymbol{K}[\boldsymbol{z}]
$$

with

$$
\log \left\|a_{k \lambda}\right\|, \log \left\|b_{k \lambda}\right\|=o\left(r^{k}\right) .
$$

Theorem 1. Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ be an algebraic point with $0<\left|\alpha_{i}\right|<$ $1(1 \leq i \leq m)$ and $\left|\alpha_{1}\right|, \ldots,\left|\alpha_{m}\right|$ are multiplicatively independent. If $F_{k}\left(\Omega_{k} \boldsymbol{\alpha}\right) \neq 0$ for every $k \geq 0$, then $\Phi_{0}(\boldsymbol{\alpha})$ is an algebraic number if and only if $\Phi_{0}(\boldsymbol{z})$ is a rational function.

References

[1] D. Duverney and Ku. Nishioka. An inductive method for proving the transcendence of certain series. Acta. Arithmetica, 110(4):305-330, 2003.
[2] Takeshi Kurosawa. Transcendence of certain series involving binary linear recurrences. Journal of Number Theory, 123(1):35-58, 2007.
[3] Yohei Tachiya. Transcendence of the values of infinite products in several variables. to appear.
[4] Yohei Tachiya. Transcendence of certain infinite products, 2007. to appear.

